Schließen

Bitte wählen Sie das von Ihnen gewünschte Land oder die Region aus,
um auf die entsprechende Website von Lesker weitergeleitet zu werden.

Archiv


Flexible Distributed Bragg Reflectors as Optical Outcouplers for OLEDs Based on a Polymeric Anode

29. Januar 2021 | Verfasser: KJLC Innovate

The Kurt J. Lesker Company (KJLC) has supported organic electronics research since producing its first dedicated PVD tool series over 20 years ago, enabling many breakthrough results. Recently a team from CNR NANOTEC (Lecce, Italy) has reported a strategy to improve the stability and durability of flexible top-emitting organic light-emitting diodes in their paper "Flexible distributed Bragg reflectors as optical outcouplers for OLEDs based on a polymeric anode", with results obtained using both KJLC deposition tools and materials.

Mehr lesen

Schlagwörter:
INNOVATE Systeme Vakuumwissenschaft Depositionsverfahren



Development of Flexible Magnetic Thin Films and Control of Their Properties via Surface Roughness Effects

29. Januar 2021 | Verfasser: KJLC Innovate

The ability to fabricate flexible nano-thin films is of great interest because of the increased demand for flexible technologies, a paradigm shift in high-tech and consumer electronics, already making significant technological and commercial impact by enabling the emergence of flexible photovoltaics, flexible electronics, flexible smart textiles and flexible displays. Flexible thin films are typically achieved by coating a given material onto a flexible substrate, via a chemical vapour deposition (CVD) process, where the coating ingredients are mostly organic materials and chemicals. Coating flexible thin films from inorganic materials such as metals, functional alloys, heterostructures, semiconductors, oxides and ceramics via solid state DC / RF plasma sputtering is less known, and it is unclear how the flexible substrate affects their properties. This project demonstrated the successful production of flexible magnetic thin films with excellent adhesion and mechanical robustness. Remarkably, the films maintained their structure, integrity and physical properties at any curvature bending applied to the flexible samples.

Mehr lesen

Schlagwörter:
INNOVATE Systeme Vakuumwissenschaft Depositionsverfahren



Novel Physical Model for Analyzing Charge-To-Spin Conversion Efficiency in Magnetic Nanowires

21. Januar 2021 | Verfasser: KJLC Innovate

Electrons have two fundamental physical properties, their charge and spin. The charge of electrons has been discovered and carefully measured long time ago[1]. The utilization of the electron charge can be found in all electronic devices. The manipulation of the electron spin, on the other hand, has been proved to be more challenging because of its quantum mechanical nature. To elucidate the physics and to design applications of the electron spin, a research area named spintronics has been established, and its rapid advance has identified the essential role of the electron spin in many fundamental properties of condensed matter systems such as the spin Hall effect[2] and the quantum spin Hall effect[3]. In addition, the research on the electron spin has resulted in numerous applications such as the giant magnetoresistance structures and tunneling magnetoresistance devices[4].

Mehr lesen

Schlagwörter:
INNOVATE Systeme Vakuumwissenschaft Depositionsverfahren



     
Contact Us - Archives
Powered by Translations.com GlobalLink OneLink SoftwarePowered By OneLink